
Jamf Pro and AutoPkg
13:30 - 14:15

UP NEXT

Graham Pugh
Senior Client Engineer - Apple Services

ETH Zürich

My name is Graham Pugh and I currently work in Switzerland at ETH Zürich as a Senior Apple Client Engineer.

[click] These are my social thingies,
and I have posted links to everything I will talk about today in my blog at graham r Pugh . com, so if you hear anything useful during the session, there's no need to write
it down. I'll also link to it again at the end.

Graham Pugh
Senior Client Engineer - Apple Services

ETH Zürich

@GrahamRPugh

@GrahamRPugh

@grahampugh

grahamrpugh.com

© JAMF Software, LLC

How JSSImporter automates package
management and policy creation in Jamf Pro

I'm very happy to talk today about using AutoPkg with Jamf Pro.
• Can I ask - How many of you are manually creating and importing packages into Jamf Pro? Hands up!
• How many of you would rather not do that manual work?
• How many of you are already using AutoPkg and JSSImporter?

© JAMF Software, LLC

How JSSImporter automates package
management and policy creation in Jamf Pro

Presentation objectives:

• AutoPkg + JSSImporter - setup and use

• Use standard JSS recipes

• Roll your own JSS recipes

• The future of JSSImporter

• Today I will try and cover everything from total beginner to advanced workflows.
• [click] We'll look at setting everything up and running AutoPkg recipes.
• We'll look inside recipes to help you understand what they do, and show what you can customise.
• Then look at use cases where you will need to create your own recipes.
• And finally, we'll wrap up with a look at the future of JSSImporter, and take questions.

Photo: ETH Zürich / Gian Marco Castelberg

• First, a little about me and where I work, and how that led to my involvement with JSSImporter.
• [click] The Swiss Federal Institute of Technology is one of the world's top universities, and the top in continental Europe.
• Like Switzerland itself, ETH has a very federal mindset, with a high degree of autonomy for professors and their institutes, who employ their own IT teams.
• The central ETH IT Services are a service provider to those teams.

Photo: ETH Zürich / Gian Marco Castelberg

ETH Zürich
Eidgenössiche Technische

Hochschule Zürich

Swiss Federal Institute of
Technology

21,397 students

9,528 staff

528 professors

QS World University Rankings
2019 - 2020

1. MIT
2. Stanford
3. Harvard
4. Oxford
5. Caltech
6. ETH Zürich
7. Cambridge
8. UCL
9. Imperial
10. Chicago

Photo: ETH Zürich / Gian Marco Castelberg

ETH Zürich
Eidgenössiche Technische

Hochschule Zürich

Swiss Federal Institute of
Technology

21,397 students

9,528 staff

528 professors

Photo: ETH Zürich / Gian Marco Castelberg

ETH Zürich
Eidgenössiche Technische

Hochschule Zürich

Swiss Federal Institute of
Technology

21,397 students

9,528 staff

528 professors

• As those teams are independent of each other, the Apple Services team of Max Schlapfer, Kati Zehnder and I, with team leader Thomas Richter, provide individual
Jamf Pro instances to each customer, just like an MSP.

• We currently maintain 31 on-premises Jamf Pro instances for our customers, and we have trained around 120 administrators how to use it.
• We provide over 100 software titles to those Jamf instances. That's not just the packages, but also the policies, smart groups and so on.

Photo: ETH Zürich / Gian Marco Castelberg

ETH Zürich
Eidgenössiche Technische

Hochschule Zürich

Swiss Federal Institute of
Technology

21,397 students

9,528 staff

528 professors

Apple @ ETH
3 client engineers

31 Jamf Pro instances

2000 managed clients

120 administrators

100 software titles

Photo: ETH Zürich / Gian Marco Castelberg

Our customers want to choose how to deploy the software, so we provide different policies for self service, auto-install, auto-update, uninstall and so on.
• We could not provide the level and variation of services we do without a high degree of automation.
• [click] To handle the volume of packages we generate and offer for deployment, AutoPkg is essential.
• And since we wanted to provide a single system for our customers to administrate their Apple devices, we didn't want to add a separate system such as Munki for

package management.
• [click] Under these circumstances, JSSImporter is the only well established way to integrate Jamf Pro with AutoPkg.
• That's why I've got so involved with JSSImporter.

Photo: ETH Zürich / Gian Marco Castelberg

Photo: ETH Zürich / Gian Marco Castelberg

© JAMF Software, LLC

Presentation objectives:

• AutoPkg + JSSImporter - setup and use

• Use standard JSS recipes

• Roll your own JSS recipes

• The future of JSSImporter

So let's dive in and look at what AutoPkg and JSSImporter are, and how they work.

© JAMF Software, LLC

• I'll start with an analogy.
• [click] As I'm British, I like to make meat pies.
• When I go to a meat pie recipe, the first thing it does is refer me to another recipe for making pastry.
• [click] Now I live in Switzerland, I might make Chäsechuechli instead.
• [click] The first part of the workflow is the same for both types of pie.

© JAMF Software, LLC

© JAMF Software, LLC

© JAMF Software, LLC

© JAMF Software, LLC

AutoPkg

AutoPkg follows the same concept.
• If you want to get an application into Jamf Pro's repo.
• [click] You're first going to need to obtain a package, which might need to be built from a source DMG or a ZIP file.
• [click] That same package is used if you are uploading to any file repository, like a Munki repo.
• [click] Additionally, to get that source file, you need to know where to find it on the web, or wherever.
• AutoPkg uses different files containing instructions for each part of this workflow. These files are called recipes.

© JAMF Software, LLC

AutoPkg

© JAMF Software, LLC

AutoPkg

© JAMF Software, LLC

AutoPkg

© JAMF Software, LLC

BrilliantApp.jss.recipe

BrilliantApp.munki.recipe

AutoPkg

• The JSS or MUNKI recipes tell AutoPkg how to upload the package to their respective repositories.
• [click] Each recipe also contains a reference identifier to the PKG recipe, referred to as a parent recipe.
• The PKG recipe contains the instructions to create a deployable package from downloaded source material.
• [click] The PKG recipe contains the identifier of a parent DOWNLOAD recipe that contains the instructions on how to obtain the installer in the first place.
• When you run a JSS recipe, it works through the parents first, so it can complete the workflow.

© JAMF Software, LLC

BrilliantApp.jss.recipe

BrilliantApp.munki.recipe

AutoPkg

BrilliantApp.pkg.recipe

© JAMF Software, LLC

BrilliantApp.jss.recipe

BrilliantApp.munki.recipe

AutoPkg

BrilliantApp.download.recipe BrilliantApp.pkg.recipe

© JAMF Software, LLC

Setup AutoPkg + JSSImporter

To interpret AutoPkg recipes, you need to install the AutoPkg software and the JSSImporter processor. These will run on any Mac.
• First, install AutoPkg. It's just a package installer from GitHub.
• You also need the Xcode command line tools, because AutoPkg uses Git.
• [click] JSSImporter is not bundled in with AutoPkg, so next, you need to install that. It's also just a package installer available via GitHub.
• [click] You need to configure JSSImporter, because you have to give it access to Jamf Pro, and tell it how to connect.
• [click] You will need to make a user on your Jamf Pro server which has the necessary rights to interact with the Jamf Pro API.
• The JSSImporter wiki explains what to do.

© JAMF Software, LLC

Setup AutoPkg + JSSImporter

autopkg.github.io/autopkg

© JAMF Software, LLC

Setup AutoPkg + JSSImporter

autopkg.github.io/autopkg
github.com/jssimporter/JSSImporter

© JAMF Software, LLC

Setup AutoPkg + JSSImporter

autopkg.github.io/autopkg
github.com/jssimporter/JSSImporter

© JAMF Software, LLC

Setup AutoPkg + JSSImporter

autopkg.github.io/autopkg
github.com/jssimporter/JSSImporter

© JAMF Software, LLC

AutoPkg Setup for JSS

• I also have a script which can do all that setup in one go called AutoPkg Setup for JSS, so go check that out.

© JAMF Software, LLC

Searching for Recipes

Once AutoPkg is installed on your computer and JSSImporter is configured, we can start to obtain and run those recipes.
• [click] Lots of people in the MacAdmin community share recipes in GitHub repositories - thanks to all of you!
• Most are gathered into a single organisation which means that autopkg can find them.

© JAMF Software, LLC

Searching for Recipes

© JAMF Software, LLC

Searching for Recipes

© JAMF Software, LLC

Searching for Recipes

© JAMF Software, LLC

Searching for Recipes

• AutoPkg is an easy-to-use command line tool.
• To search for a recipe, run autopkg with the verb 'search' and the name of an app.
• [click] I get a list of possible recipes - I want the jss recipe since I use Jamf Pro.
• [click] One exists, so we can use that.
• [click] It's in the repo named jss-recipes, so let's download the contents of that to our computer with the verb 'repo-add'.

© JAMF Software, LLC

$

Searching for Recipes

© JAMF Software, LLC

$

Searching for Recipes
$ autopkg search iTerm2

© JAMF Software, LLC

$

Searching for Recipes
$ autopkg search iTerm2
Name Repo Path
---- ---- ——
iTerm2.pkg.recipe hjuutilainen-recipes iTerm2/iTerm2.pkg.recipe
iTerm2.download.recipe hjuutilainen-recipes iTerm2/iTerm2.download.recipe
iTerm2.munki.recipe hjuutilainen-recipes iTerm2/iTerm2.munki.recipe
iTerm2.jss.recipe jss-recipes iTerm2/iTerm2.jss.recipe
iTerm2.download.recipe keeleysam-recipes iTerm2/iTerm2.download.recipe
iTerm2.munki.recipe keeleysam-recipes iTerm2/iTerm2.munki.recipe
iTerm2.filewave.recipe peshay-recipes iTerm2/iTerm2.filewave.recipe

To add a new recipe repo, use 'autopkg repo-add <repo name>'

© JAMF Software, LLC

$

Searching for Recipes
$ autopkg search iTerm2
Name Repo Path
---- ---- ——
iTerm2.pkg.recipe hjuutilainen-recipes iTerm2/iTerm2.pkg.recipe
iTerm2.download.recipe hjuutilainen-recipes iTerm2/iTerm2.download.recipe
iTerm2.munki.recipe hjuutilainen-recipes iTerm2/iTerm2.munki.recipe
iTerm2.jss.recipe jss-recipes iTerm2/iTerm2.jss.recipe
iTerm2.download.recipe keeleysam-recipes iTerm2/iTerm2.download.recipe
iTerm2.munki.recipe keeleysam-recipes iTerm2/iTerm2.munki.recipe
iTerm2.filewave.recipe peshay-recipes iTerm2/iTerm2.filewave.recipe

To add a new recipe repo, use 'autopkg repo-add <repo name>'

© JAMF Software, LLC

$

Searching for Recipes
$ autopkg search iTerm2
Name Repo Path
---- ---- ——
iTerm2.pkg.recipe hjuutilainen-recipes iTerm2/iTerm2.pkg.recipe
iTerm2.download.recipe hjuutilainen-recipes iTerm2/iTerm2.download.recipe
iTerm2.munki.recipe hjuutilainen-recipes iTerm2/iTerm2.munki.recipe
iTerm2.jss.recipe jss-recipes iTerm2/iTerm2.jss.recipe
iTerm2.download.recipe keeleysam-recipes iTerm2/iTerm2.download.recipe
iTerm2.munki.recipe keeleysam-recipes iTerm2/iTerm2.munki.recipe
iTerm2.filewave.recipe peshay-recipes iTerm2/iTerm2.filewave.recipe

To add a new recipe repo, use 'autopkg repo-add <repo name>'

© JAMF Software, LLC

Adding a repository

• The repo is cloned to our computer using git.

© JAMF Software, LLC

Adding a repository
$ autopkg repo-add jss-recipes
Attempting git clone...

Adding /Users/g/Library/AutoPkg/RecipeRepos/com.github.autopkg.jss-recipes to RECIPE_SEARCH_DIRS…

Updated search path:
 '.'
 '~/Library/AutoPkg/Recipes'
 '/Library/AutoPkg/Recipes'
 '/Users/g/Library/AutoPkg/RecipeRepos/com.github.autopkg.jss-recipes'

© JAMF Software, LLC

Getting recipe information

We need to make sure we also have the repos of the parent recipes on our computer before we can actually run the recipe.
• To check this, we can run the verb 'info'.
• [click] It looks inside the recipe for the identifier of the parent, and then checks our local search path to see if we have that recipe.
• If we don't, so it offers to search GitHub for it.
• [click] It's in the “hjuutilainen-recipes” repo, so let's add that.

© JAMF Software, LLC

Getting recipe information
$ autopkg info iTerm2.jss

© JAMF Software, LLC

Getting recipe information
$ autopkg info iTerm2.jss
Didn't find a recipe for io.github.hjuutilainen.pkg.iTerm2.
Search GitHub AutoPkg repos for an io.github.hjuutilainen.pkg.iTerm2 recipe? [y/n]:

© JAMF Software, LLC

Getting recipe information
$ autopkg info iTerm2.jss
Didn't find a recipe for io.github.hjuutilainen.pkg.iTerm2.
Search GitHub AutoPkg repos for an io.github.hjuutilainen.pkg.iTerm2 recipe? [y/n]:

Name Repo Path
---- ---- ----
iTerm2.install.recipe hjuutilainen-recipes iTerm2/iTerm2.install.recipe
iTerm2.pkg.recipe hjuutilainen-recipes iTerm2/iTerm2.pkg.recipe
iTerm2.munki.recipe hjuutilainen-recipes iTerm2/iTerm2.munki.recipe
iTerm2.jss.recipe jss-recipes iTerm2/iTerm2.jss.recipe
iTerm2.LANrev.recipe seansgm-recipes LANrevRecipes/iTerm2.LANrev.recipe

To add a new recipe repo, use 'autopkg repo-add <repo name>'
Could not find parent recipe for iTerm2.jss
No valid recipe found for iTerm2.jss

© JAMF Software, LLC

Getting recipe information

So we add that repo,
And the downloaded clone is added to the search path below.

© JAMF Software, LLC

Getting recipe information
$ autopkg repo-add hjuutilainen-recipes
Attempting git clone...

Adding /Users/g/Library/AutoPkg/RecipeRepos/com.github.autopkg.hjuutilainen-recipes to
RECIPE_SEARCH_DIRS…

Updated search path:
 '.'
 '~/Library/AutoPkg/Recipes'
 '/Library/AutoPkg/Recipes'
 ‘/Users/g/Library/AutoPkg/RecipeRepos/com.github.autopkg.jss-recipes'
 '/Users/g/Library/AutoPkg/RecipeRepos/com.github.autopkg.hjuutilainen-recipes'

© JAMF Software, LLC

Getting recipe information

Once we have all the repos we need locally, the “info” verb gives you a bunch of info about the recipe, including the paths to all the recipe files.

© JAMF Software, LLC

Getting recipe information
$ autopkg info iTerm2.jss
Description: Downloads the current release version of iTerm 2 and makes a package.
 Then, uploads to the JSS.

Identifier: com.github.jss-recipes.jss.iTerm2

Builds package: True

Recipe file path: /Users/g/Library/AutoPkg/RecipeRepos/
 com.github.autopkg.jss-recipes/iTerm2/iTerm2.jss.recipe

Parent recipe(s): /Users/g/Library/AutoPkg/RecipeRepos/
 com.github.autopkg.hjuutilainen-recipes/iTerm2/iTerm2.pkg.recipe
 /Users/g/Library/AutoPkg/RecipeRepos/
 com.github.autopkg.hjuutilainen-recipes/iTerm2/
 iTerm2.download.recipe

© JAMF Software, LLC

Getting recipe information
$ autopkg info iTerm2.jss
Description: Downloads the current release version of iTerm 2 and makes a package.
 Then, uploads to the JSS.

Identifier: com.github.jss-recipes.jss.iTerm2

Builds package: True

Recipe file path: /Users/g/Library/AutoPkg/RecipeRepos/
 com.github.autopkg.jss-recipes/iTerm2/iTerm2.jss.recipe

Parent recipe(s): /Users/g/Library/AutoPkg/RecipeRepos/
 com.github.autopkg.hjuutilainen-recipes/iTerm2/iTerm2.pkg.recipe
 /Users/g/Library/AutoPkg/RecipeRepos/
 com.github.autopkg.hjuutilainen-recipes/iTerm2/
 iTerm2.download.recipe

• What you need to do now is go and look at all those files and make sure you understand what they are doing, and that you trust them.
• AutoPkg is really powerful, because it builds packages that you could have no idea about, which you then install on all your clients using Jamf, which of course runs

as root on those clients.
• That's obviously dangerous, so you need to make sure you know what's in those packages to protect your users.
• Fortunately, AutoPkg has a built in safety feature to make sure you do go check those files.

© JAMF Software, LLC

Getting recipe information

• This security feature is not enabled by default, but I strongly urge you to set it.
• To set it as the default, run this defaults write command.

© JAMF Software, LLC

Getting recipe information
$ defaults write com.github.autopkg
 FAIL_RECIPES_WITHOUT_TRUST_INFO -bool true

© JAMF Software, LLC

Running a recipe that changed

We run a recipe with the verb 'run'.
If you run the recipe without first telling AutoPkg that you trust it,

• [click] the recipe fails, saying "No trust information present".
• This is your cue to go verify that the files are OK.

© JAMF Software, LLC

Running a recipe that changed
$ autopkg run iTerm2.jss

© JAMF Software, LLC

Running a recipe that changed
$ autopkg run iTerm2.jss
Failed local trust verification.

The following recipes failed:
 iTerm2.jss
 No trust information present.

Nothing downloaded, packaged or imported.

© JAMF Software, LLC

Running a recipe that changed

• Once you are happy with the recipe contents, run the "make-override" verb.
• This makes a new local recipe file called a recipe override.
• This is a special recipe which has the main JSS recipe as its parent.
• It includes trust information about each of the parent recipes - basically, the hash of each file.

© JAMF Software, LLC

Running a recipe that changed
$ autopkg make-override iTerm2.jss
Override file saved to /Users/g/Library/AutoPkg/RecipeOverrides/iTerm2.jss.recipe

© JAMF Software, LLC

Running a recipe

Now when we run the recipe, it checks the trust info is correct in the override, and proceeds…
1. A new item is downloaded to a cache folder - in this case a ZIP file.
2. A package is built and the version is identified.
3. And a bunch of changes were made to the Jamf Pro server.

• [click] new categories, a group, the policy object, icon etc.

© JAMF Software, LLC

Running a recipe
$ autopkg run iTerm2.jss

The following new items were downloaded:
 Download Path

 /Users/g/Library/AutoPkg/Cache/local.jss.iTerm2/downloads/iTerm2-3_3_4.zip

The following packages were built:
 Identifier Version Pkg Path
 ---------- ------- --------
 com.googlecode.iterm2 3.3.4 /Users/g/Library/AutoPkg/Cache/local.jss.iTerm2/iTerm2-3.3.4.pkg

The following changes were made to the Jamf Pro Server:
 Name Package Categories Groups Scripts Extension Attributes Policy Icon Version Package Uploaded
 ---- ------- ---------- ------ ------- -------------------- ------ ---- ------- ----------------
 iTerm2 iTerm2-3.3.4.pkg Testing, Computer Science iTerm2-update-smart Install Latest iTerm2 iTerm2.png 3.3.4 True

Processing iTerm2.jss...

© JAMF Software, LLC

Running a recipe
$ autopkg run iTerm2.jss

The following new items were downloaded:
 Download Path

 /Users/g/Library/AutoPkg/Cache/local.jss.iTerm2/downloads/iTerm2-3_3_4.zip

The following packages were built:
 Identifier Version Pkg Path
 ---------- ------- --------
 com.googlecode.iterm2 3.3.4 /Users/g/Library/AutoPkg/Cache/local.jss.iTerm2/iTerm2-3.3.4.pkg

The following changes were made to the Jamf Pro Server:
 Name Package Categories Groups Scripts Extension Attributes Policy Icon Version Package Uploaded
 ---- ------- ---------- ------ ------- -------------------- ------ ---- ------- ----------------
 iTerm2 iTerm2-3.3.4.pkg Testing, Computer Science iTerm2-update-smart Install Latest iTerm2 iTerm2.png 3.3.4 True

Processing iTerm2.jss...

© JAMF Software, LLC

Running a recipe again

If we run the recipe again, and the source files haven't changed, nothing happens.
This means you can safely run the recipe on a schedule, like every night.

© JAMF Software, LLC

Running a recipe again

Processing iTerm2.jss...

Nothing downloaded, packaged or imported.

$ autopkg run iTerm2.jss

© JAMF Software, LLC

Running a recipe list

It also means you can run all your recipes at once using a recipe list file.
[click] Create a text file containing all your recipes, and run with the 'recipe-list' argument.

© JAMF Software, LLC

Running a recipe list
$ autopkg run --recipe-list JSS_Recipes.txt

© JAMF Software, LLC

Running a recipe list
$ autopkg run --recipe-list JSS_Recipes.txt

Papers.jss
Carbon Copy Cloner.jss
VMware Horizon Client.jss
Adobe Acrobat Reader DC.jss
BBEdit.jss
FileZilla.jss
GraphicConverter 10.jss
R.jss
RStudio.jss
Adobe Flash Player.jss
Google Chrome.jss
Skype.jss
Microsoft Remote Desktop.jss
LibreOffice.jss
ISL Light Client.jss
GIMP.jss
DataWarrior.jss
XQuartz.jss
PopChar.jss
Quicksilver.jss
PyMOL.jss
Mathematica.jss

© JAMF Software, LLC

Updating repos

Recipes can get updated over time, for instance because the source URL provided by the vendor might change,
so after a while you should synchronise your repos, using "repo-update all"

• Any remote changes are downloaded.
• [click] You see here that our iTerm2 jss recipe has changed.

© JAMF Software, LLC

Updating repos

Attempting git pull for /Users/gpugh/Library/AutoPkg/RecipeRepos/com.github.autopkg.cgerke-recipes...
Already up to date.

Attempting git pull for /Users/gpugh/Library/AutoPkg/RecipeRepos/com.github.autopkg.jss-recipes...
Updating 608ea78..d79e5b5
Fast-forward
 iTerm2/iTerm2.jss.recipe | 4 +
 1 file changed, 4 insertions(+)

Attempting git pull for /Users/gpugh/Library/AutoPkg/RecipeRepos/com.github.autopkg.andrewvalentine-
recipes...
Updating b6d4d9e..a025f7d
Fast-forward
 .../EndNoteX9-self-install.pkg.recipe | 55 ++++++++++++++++++++++
 EndNote-self-install/scripts/postinstall | 5 ++
 2 files changed, 60 insertions(+)
 create mode 100644 EndNote-self-install/EndNoteX9-self-install.pkg.recipe
 create mode 100755 EndNote-self-install/scripts/postinstall

Attempting git pull for /Users/gpugh/Library/AutoPkg/RecipeRepos/com.github.autopkg.dataJAR-recipes...
Updating 2028422..34ab82f
Fast-forward
 Apache NetBeans 11/Apache NetBeans 11.munki.recipe | 4 -

$ autopkg repo-update all

© JAMF Software, LLC

Updating repos

Attempting git pull for /Users/gpugh/Library/AutoPkg/RecipeRepos/com.github.autopkg.cgerke-recipes...
Already up to date.

Attempting git pull for /Users/gpugh/Library/AutoPkg/RecipeRepos/com.github.autopkg.jss-recipes...
Updating 608ea78..d79e5b5
Fast-forward
 iTerm2/iTerm2.jss.recipe | 4 +
 1 file changed, 4 insertions(+)

Attempting git pull for /Users/gpugh/Library/AutoPkg/RecipeRepos/com.github.autopkg.andrewvalentine-
recipes...
Updating b6d4d9e..a025f7d
Fast-forward
 .../EndNoteX9-self-install.pkg.recipe | 55 ++++++++++++++++++++++
 EndNote-self-install/scripts/postinstall | 5 ++
 2 files changed, 60 insertions(+)
 create mode 100644 EndNote-self-install/EndNoteX9-self-install.pkg.recipe
 create mode 100755 EndNote-self-install/scripts/postinstall

Attempting git pull for /Users/gpugh/Library/AutoPkg/RecipeRepos/com.github.autopkg.dataJAR-recipes...
Updating 2028422..34ab82f
Fast-forward
 Apache NetBeans 11/Apache NetBeans 11.munki.recipe | 4 -

$ autopkg repo-update all

© JAMF Software, LLC

Running a recipe that changed

• Let's run that recipe again.
• It's going to fail, because the contents differ from expected - the hash of the file in the repo does not now match the hash in your override.
• At this point you want to go look at the recipe again and see what changed.

© JAMF Software, LLC

Running a recipe that changed
$ autopkg run iTerm2.jss
Failed local trust verification.

The following recipes failed:
 iTerm2.jss
 Parent recipe com.github.jss-recipes.jss.iTerm2 contents differ from expected.
 Path: /Users/gpugh/Library/AutoPkg/RecipeRepos/com.github.autopkg.jss-recipes/iTerm2/
 iTerm2.jss.recipe

Nothing downloaded, packaged or imported.

© JAMF Software, LLC

Running a recipe that changed

To help make it easy to see what changed, there is the "verify-trust-info" verb.
• If you run it with two Vs to get a verbose output,
• [click] it shows you a git diff of the file contents, nicely colour coded.
• This change is innocuous, just a change to the self service description, so I'm happy to let it run.

© JAMF Software, LLC

Running a recipe that changed
$ autopkg verify-trust-info -vv iTerm2.jss

© JAMF Software, LLC

Running a recipe that changed
$ autopkg verify-trust-info -vv iTerm2.jss
iTerm2.jss: FAILED
 Parent recipe com.github.jss-recipes.jss.iTerm2 contents differ from expected.
 Path: /Users/gpugh/Library/AutoPkg/RecipeRepos/com.github.autopkg.jss-recipes/
iTerm2/iTerm2.jss.recipe
 diff --git a/iTerm2/iTerm2.jss.recipe b/iTerm2/iTerm2.jss.recipe
 index 36a1c78..f9c081a 100644
 --- a/iTerm2/iTerm2.jss.recipe
 +++ b/iTerm2/iTerm2.jss.recipe
 @@ -23,7 +23,7 @@
 <key>POLICY_TEMPLATE</key>
 <string>PolicyTemplate.xml</string>
 <key>SELF_SERVICE_DESCRIPTION</key>
 - <string>iTerm2 is a replacement for Terminal.</string>
 + <string>iTerm2 is a free alternative to Terminal.</string>
 <key>SELF_SERVICE_ICON</key>

© JAMF Software, LLC

Running a recipe that changed

Once you're happy that you trust the changes, enter the "update-trust-info" verb and your override is updated with the new hashes, ready to run the recipe again.

© JAMF Software, LLC

Running a recipe that changed
$ autopkg update-trust-info iTerm2.jss
Wrote updated /Users/gpugh/Library/AutoPkg/RecipeOverrides/iTerm2.jss.recipe

© JAMF Software, LLC

• There's also a great Mac application that you can use, that works on top of AutoPkg, called AutoPkgr.
• [click] This can be used to everything from installing and configuring Git, AutoPkg and JSSImporter, performing all the commands I have been describing via the

GUI, and sending notifications to slack, email and so on.
• The app was dormant for a while, but Shawn Honsburger at LindeGroup has now updated it for Catalina and it's working with JSSImporter again - A huge thank you

to Shawn for bringing AutoPkgr back to life!
• It is important to understand that AutoPkgr is a wrapper on top of AutoPkg - when you do something in the GUI, it's just running the commands.
• So even if you use AutoPkgr, you should know the autopkg commands, and run them in verbose mode for troubleshooting problems.

© JAMF Software, LLC

© JAMF Software, LLC

© JAMF Software, LLC

Troubleshooting

• For example, if we run a recipe with -v, we get much more verbosity about what's going on - you see output of each processor in turn.
• You can add up to 4 Vs to get extremely detailed output.

© JAMF Software, LLC

Troubleshooting

Processing iTerm2.jss...
SparkleUpdateInfoProvider
SparkleUpdateInfoProvider: Version retrieved from appcast: 3.3.6
SparkleUpdateInfoProvider: Found URL https://iterm2.com/downloads/stable/
iTerm2-3_3_6.zip
URLDownloader
URLDownloader: Item at URL is unchanged.
URLDownloader: Using existing /Users/gpugh/Library/AutoPkg/Cache/local.jss.iTerm2/
downloads/iTerm2-3_3_6.zip
EndOfCheckPhase
Unarchiver
Unarchiver: Guessed archive format 'zip' from filename iTerm2-3_3_6.zip
Unarchiver: Unarchived /Users/gpugh/Library/AutoPkg/Cache/local.jss.iTerm2/
downloads/iTerm2-3_3_6.zip to /Users/gpugh/Library/AutoPkg/Cache/local.jss.iTerm2/
iTerm2
CodeSignatureVerifier
CodeSignatureVerifier: Verifying code signature...
CodeSignatureVerifier: Deep verification enabled...
CodeSignatureVerifier: Strict verification enabled...
CodeSignatureVerifier: /Users/gpugh/Library/AutoPkg/Cache/local.jss.iTerm2/iTerm2/
iTerm.app: valid on disk
CodeSignatureVerifier: /Users/gpugh/Library/AutoPkg/Cache/local.jss.iTerm2/iTerm2/
iTerm.app: satisfies its Designated Requirement

$ autopkg run -v iTerm2.jss

© JAMF Software, LLC

More info about AutoPkg

• To find out more, the autopkg 'help' verb gives you a complete set of options.
• [click] Also, the AutoPkg wiki on GitHub is an essential resource for understanding AutoPkg.

© JAMF Software, LLC

$ autopkg help
Usage: autopkg <verb> <options>, where <verb> is one of the following:

 help (Display this help)
 info (Get info about configuration or a recipe)
 list-processors (List available core Processors)
 list-recipes (List recipes available locally)
 make-override (Make a recipe override)
 processor-info (Get information about a specific processor)
 repo-add (Add one or more recipe repo from a URL)
 repo-delete (Delete a recipe repo)
 repo-list (List installed recipe repos)
 repo-update (Update one or more recipe repos)
 run (Run one or more recipes)
 search (Search for recipes on GitHub.)
 version (Print the current version of autopkg)

autopkg <verb> --help for more help for that verb

More info about AutoPkg

© JAMF Software, LLC

github.com/autopkg/autopkg/wiki

More info about AutoPkg

© JAMF Software, LLC

AutoPkg Conductor

• [slide was not shown in the session]
• Rich Trouton has a script which helps you automate the running of AutoPkg and provide notifications to Slack.

© JAMF Software, LLC

Presentation objectives:

• AutoPkg + JSSImporter - setup and use

• Use standard JSS recipes

• Roll your own JSS recipes

• The future of JSSImporter

So that was how to use AutoPkg.
Let's look inside the standard JSS recipes, to try an understand what is going on under the hood, and see what we can customise.

© JAMF Software, LLC

JSS recipes are designed to import packages and create testing policies.
• If we look at a Jamf Pro server where a few of the standard JSS recipes have run,
• we see that each recipe provides consistent content in your server:

• A Self Service policy in a Testing category,
• with ongoing frequency,
• with the package attached, updating inventory,
• and a smart group for each policy with a consistent name.

atom.jss.recipe

Let's look at a standard JSS Recipe.
• Here's the Atom.jss recipe. It's a PLIST file, which aren't the nicest things to look at - but let's zoom in and break it down.
• The description, and [click] recipe identifier are at the top.
• [click] And further down, the reference to the Parent PKG Recipe.
• [click] Underneath that we have the information about the JSSImporter process itself.

• There are keys for the package and policy categories, Smart Group and policy templates, policy name, self service description and icon.
• Each key has a value inside percent signs. These are overridable variables, and you'll see them in all AutoPkg recipes.
• [click] At the top, the Input section is where the default values for those overridable variables are set.
• If you want to change any of these overridable values, you don't edit the JSS recipe itself. You instead go to the recipe override file.

atom.jss.recipe

atom.jss.recipe

atom.jss.recipe

atom.jss.recipe

atom.jss.recipe

RecipeOverrides/atom.jss.recipe

• Here's the override file for Atom's jss recipe.
• [click] Here are the same Input keys as in the recipe. They are copied here when the override file is made, and if you want to change any value, these values take

precedence over the ones in the JSS recipe itself.
• When you update trust info, your changes to the Input keys are not overwritten.
• Notice these three keys for Group Template, Policy Template and Self Service icon. These are referring to separate files.

RecipeOverrides/atom.jss.recipe

RecipeOverrides/atom.jss.recipe

Standard JSS recipes

• [click] JSS recipes use XML template files to create policy objects and smart groups.
• Like recipes, these files contain variables that can be overridden in the recipe overrides. This means that they can be re-used for multiple recipes - in fact you can

use the same ones for most recipes.
• [click] Sometimes recipes also need Extension Attributes or scripts, for scoping, or for post-installation tasks. These scripts and EAs need their own template files.
• These should be provided in the repo of the JSS recipe when required.
• [click] An icon file is also needed, so that the Self Service policy is easily identified. These are also provided in the repository along with the JSS recipe.

Standard JSS recipes

Policy & Group
Templates

Standard JSS recipes

Extension Attribute
& Script Templates

Policy & Group
Templates

Standard JSS recipes

Extension Attribute
& Script Templates

Self Service
icon

Policy & Group
Templates

Smart Group Templates

Let's look at the Standard Smart Group created by a JSS recipe.
• The smart group that is created by JSSImporter has a consistent set of criteria.
• The computer has an application of a particular name.
• The application version on the computer does not match the value provided.
• And, the computer is in a group named 'Testing', which you have to make. This can be smart or static.

SmartGroupTemplate.xml

• If we look in the standard Smart Group Template, you can see how this is generated.
• [click] The criteria are that the computer has an Application Title matching a title provided in the JSS recipe,
• [click] the computer has a different version to the one provided in the JSS recipe,
• [click] And the computer is in a Computer group Testing.

• [click to clear] There's not much you can override in here, as the app name and version are automatically generated and the Testing group is hard coded.
• If you want to add additional criteria, or change to different criteria, you need to change the template directly, so you have to save a copy in your Recipe Overrides

folder and then make your edits.

SmartGroupTemplate.xml

SmartGroupTemplate.xml

SmartGroupTemplate.xml

SmartGroupTemplate.xml

SmartGroupTemplate.xml

• If you do make your own group templates, [click] note that there are keys for changing the 'and/or' options, and for setting opening and closing parentheses, just
like in the GUI.

• Also, make sure the priority keys for each criterion are in order from 0 upwards, otherwise you can end up with an empty smart group, which is a very bad idea in
Jamf...

SmartGroupTemplate.xml

SmartGroupTemplate.xml

• [slide was not shown in the session]
• I want all my Testing computers to see every app that's available for testing, not just computers with an older version of the untested app already installed.
• so, I want my smart groups to look like this,
• Where either the computer has the app installed but not the version that is provided in the policy,
• OR the computer does not have the app installed at all,
• AND still that it should be in the Testing group.
• To do this we need parentheses around the first two, and change the and/or value to OR.

SmartGroupTemplate-untested.xml

• [slide was not shown in the session]
• In this smart group template,
• [click] I add the criterion that the computer does NOT have the Application Title provided in the JSS recipe.
• [click] I keep the two criteria that state if a different version of the app is installed on the computer, the policy will show in Self Service.
• [click] And I add open and closing parentheses to the Title/Version criteria, and an OR search type to the alternative criteria.

PolicyTemplate.xml

• Let's also look at the standard policy template to see what we can override in there.
• [click] First notice the scope, package config and scripts are entirely handled by JSSImporter, so you don't usually edit these in the template as you can set them as

you wish in the recipe override.
• Note that the policy name is not completely overridable -'Install Latest' is hard-coded into the template.
• [click to move] the same is true of the Self Service button text, where the word 'Install' is hard-coded in.
• If you want to be able to change these values more fundamentally, you have to edit the standard policy template, so you have to make a copy in your Recipe

Overrides folder.

PolicyTemplate.xml

PolicyTemplate.xml

PolicyTemplate.xml

RecipeOverrides/PolicyTemplate.xml

• As an example, here's our main policy template I use at my work.
• [click] We change the policy name and self service name to include the version number.
• [click] we remove the version from the install button.

RecipeOverrides/PolicyTemplate.xml

RecipeOverrides/PolicyTemplate.xml

• Here's another example, which is a trigger only policy template.
• This can be used for creating policies that you call from a single enrolment script, for example.
• Instead of using Self Service, this creates a policy that is triggered by an event trigger.
• [click] In this case you can override the scope to All Computers.
• [click] You add the trigger-other key, and can provide the value to that in your recipe override.

Testing to Prod workflows

• [slide was not shown in the session]
A note on promoting packages to production.
Standard JSS recipes are designed to upload packages into Jamf for testing. Once tested, we then want to deploy those packages in production.

• There's no recipes for this, so most people make their prod policies manually in the Jamf GUI.
• When you update the version that you want to go to production, you just go into your existing production policy and switch the package.
• If you're scoping dynamically, you will also need to go into the smart group and change the current version.

Testing to Prod workflows

jss_helper

• [slide was not shown in the session]
• The promotion to production task is made easier using JSS_Helper.
• [click] This script was written by Shea Craig, same as JSSImporter.
• [click] Run 'jss_helper promote', and it identifies policies where there is a newer package available in Jamf compared to the one currently attached to the policy.
• [click] You choose one, and it shows you the newer package or packages.
• In this case there's just one, so just press enter, and your prod policy is automatically updated with the latest package, using the Jamf Pro API.

jss_helper

$ jss_helper promote

jss_helper

No policy specified in args: Building a list of policies which have newer packages available...
Retrieving 5 policies. Please wait...

 0: Install Latest AdoptOpenJDK 8
 1: Install Latest AdoptOpenJDK 11
 2: Install Latest Adobe Creative Cloud
 3: Install Adobe Creative Cloud

Enter a number to select from list.
Please choose an object:

$ jss_helper promote

jss_helper

No policy specified in args: Building a list of policies which have newer packages available...
Retrieving 5 policies. Please wait...

 0: Install Latest AdoptOpenJDK 8
 1: Install Latest AdoptOpenJDK 11
 2: Install Latest Adobe Creative Cloud
 3: Install Adobe Creative Cloud

Enter a number to select from list.
Please choose an object:

No policy specified in args: Building a list of policies which have newer packages available...
Retrieving 5 policies. Please wait...

 0: Install Latest AdoptOpenJDK 8
 1: Install Latest AdoptOpenJDK 11
 2: Install Latest Adobe Creative Cloud
 3: Install Adobe Creative Cloud

Enter a number to select from list.
Please choose an object: 3

 0: AdobeCCDA-5.0.0.354.pkg (CURRENT) (DEFAULT)

Enter a number to select from list.
Enter 'F' to expand the options list.
Hit <Enter> to accept default choice.
Please choose an object:

$ jss_helper promote

jss_helper

• [slide was not shown in the session]
If you want to scope your production policies smartly like your testing policies, you'll also need switch the version number in the production smart group.

Testing to Prod workflows

• [slide was not shown in the session]
If you want smart scoping however, you can create a policy with ongoing recurrence, scoped to a smart group similar to the one created by JSSImporter.

© JAMF Software, LLC

Presentation objectives:

• AutoPkg + JSSImporter - setup and use

• Use standard JSS recipes

• Roll your own JSS recipes

• The future of JSSImporter

So that was a look at standard recipes, and the extent to which you can customise by overriding variables and templates.
If your needs are not met by the standards, you can still use JSSImporter.
But you may have to create your own recipes.

© JAMF Software, LLC

Bespoke JSS Recipes

BrilliantApp.download.recipe BrilliantApp.pkg.recipe BrilliantApp.jss.recipe

If there are existing download and pkg recipes for your app,
[click] You only need to create your own JSS recipe.
Of course, if a standard JSS recipe already exists, you can just copy that into your own repo and edit to make the changes you need.
Just make sure you give it a different Identifier.

© JAMF Software, LLC

Bespoke JSS Recipes

BrilliantApp.jss.recipe

JSSRecipeCreator

• If there's no JSS recipe yet for an app, you can use JSSRecipeCreator to easily make one
• This is a tool created by Shea Craig who wrote JSSImporter.
• [click] Run from the command line with the auto option,
• [click] and specify the path to a parent pkg recipe.
• It will ask you what package category you want, and then generate the recipe for you.

JSSRecipeCreator

$ JSSRecipeCreator.py

JSSRecipeCreator

$ JSSRecipeCreator.py $ JSSRecipeCreator.py --auto

JSSRecipeCreator

$ JSSRecipeCreator.py $ JSSRecipeCreator.py --auto

$ JSSRecipeCreator.py --auto
 ~/Library/AutoPkg/RecipeRepos/
 com.github.autopkg.recipes/VLC/VLC.pkg.recipe

Recipe Robot

• [slide was not shown in the session]
• I should also give a shout out to Elliot Jordan's awesome app named Recipe Robot.
• This tool is primarily useful for building standard download, pkg, Munki, install and JSS recipes.
• Where just the JSS recipe is required, or you need a package-only recipe, I recommend JSSRecipeCreator instead.

Package-only Recipes

• One of the most common questions I've been asked about is using AutoPkg to import packages without creating any policies. To do this, you currently need to
create your own recipes.

• A use case for these is integrating AutoPkg with Patch Management - those of you in the AutoPkg workshop on Tuesday will have come across this.
• Daz Wallace of DataJAR has a blog post about creating these package-only recipes.
• He suggests that we give these recipes the .jss-upload suffix rather than just .jss, to avoid confusion with the standard recipes.

Package-only Recipes

• [slide was not shown in the session]
• Keith Mitnick of HCS Technology Group also wrote about this concept, and explains how to use these recipes in AutoPkgr.

unison.jss-upload.recipe

• Let's look at an example package-only recipe for an app called Unison.
• [click] Since we don't want a policy or group, the recipe only needs a name, and a package category.
• [click] The Input array is therefore also very simple - just those two values.
• Pretty much all package-only recipes look the the same as this.

unison.jss-upload.recipe

unison.jss-upload.recipe

unison.jss-upload.recipe

unison.jss-upload.recipe

JSSRecipeCreator for package-only

• Since there has been recent interest in package-only recipes, I've also added the ability to automatically generate these types of recipes with JSSRecipeCreator.
• [click] Run from the command line with the package-only option,
• [click] and specify the path to a parent pkg recipe.
• [click] It will just ask you for the category, which you can choose from a list of existing categories on your Jamf Pro Server.

JSSRecipeCreator for package-only

$ JSSRecipeCreator.py

JSSRecipeCreator for package-only

$ JSSRecipeCreator.py $ JSSRecipeCreator.py --package_only

JSSRecipeCreator for package-only

$ JSSRecipeCreator.py $ JSSRecipeCreator.py --package_only

$ JSSRecipeCreator.py --package_only
 ~/Library/AutoPkg/RecipeRepos/
 com.github.autopkg.recipes/VLC/VLC.pkg.recipe

Auto Update Magic - @homebysix

• What about using recipes to create your prod policies?
• You might have heard of Elliot Jordan's Auto Update Magic, which was presented here at JNUC back in 2014.
• This is a complete testing to prod workflow which uses standard JSS recipes for testing, and a different set of recipes for prod.
• Production recipes are run manually when you are ready to promote.
• He provides some examples, but for most applications you need to create your own production recipes and templates.
• I don't have enough time to go into it here but he explains how to do it in the wiki.

Auto Update - @tlark

• [slide was not shown in the session]
• Tom Larkin wrote a good workflow for creating your production policies.
• This describes a similar workflow to what I just described, with some additional features to scope smartly, and also some extra magic to ensure that an app is not

running before updating.
• There is manual work to generate the policies in the first place, but for most organisations with a single Jamf Pro instance, and not too many apps, the amount of

manual work to set up and maintain the workflow is perfectly manageable.

© JAMF Software, LLC

Production JSS recipes

JSSRecipeReceiptChecker processor
Use package and info from cache and
receipt of JSS recipe run
No need to re-download / re-package
Optionally create multiple policies at
once: trigger-only, auto-install, auto-
update, self service.

• [slide was not shown in the session]
• I use a similar concept, but I wanted to use the cache of the standard JSS recipe run rather than download it again.
• [click] So I wrote a processor to read the receipt from the last run of the JSS recipe.
• [click] All AutoPkg recipe runs create a receipt file that logs everything that happened during the run.
• The processor grabs the package name, category and self service description from the receipt, and creates or updates the existing prod policy direct from AutoPkg

- no other tools required.
• [click] There is no parent recipe, so no need to re-download and repackage the app. You already have the package you want.
• [click] If you want, these recipes can include multiple processors to create different policy types for different clients.
• This is particularly useful when creating more advanced policies and scopes for more difficult applications.

© JAMF Software, LLC

Script-only recipes

• We also have a bunch of policies in our Jamf Pro server that don't have packages.
• We have script-based policies for all sorts of things, like installing printers, uninstalling applications, ignoring updates and so on.
• JSSImporter can be used to create any type of policy!
• [click] Script-only policies are just like normal JSS recipes, but they don't need a parent recipe, since there's no pkg.
• [click] they have an empty pkg_path key in the Processor instructions,
• [click] and require a scripts array, where the script is given a name and a template file.
• Depending on the purpose of the script, you might want to make a once-per-computer policy, or scope it based on an Extension Attribute, which can also be

bundled in with the recipe.
• [click] This way, we can have everything that's in our Jamf Pro server in git, and every type of policy can be added and updated using AutoPkg.
• I have some examples of script only recipes in my recipe repo to get you started, and my intention is to make more available, particularly for maintaining uninstaller

policies.

© JAMF Software, LLC

Script-only recipes

No parent recipe

© JAMF Software, LLC

Script-only recipes

No parent recipe
Empty pkg_path

<key>pkg_path</key>
 <string></string>

© JAMF Software, LLC

Script-only recipes

No parent recipe
Empty pkg_path
Array of scripts <key>scripts</key>

 <array>
 <dict>
 <key>name</key>
 <string>%SCRIPT_NAME%.sh</string>
 <key>template_path</key>
 <string>%SCRIPT_TEMPLATE%</string>
 </dict>
 </array>

<key>pkg_path</key>
 <string></string>

© JAMF Software, LLC

Proposed naming convention

Recipe Name.jss.recipe
Recipe Name.jss-upload.recipe
Recipe Name.jss-triggeronly.recipe
Recipe Name.jss-prod.recipe
Recipe Name.jss-script.recipe
Recipe Name.jss-uninstall.recipe

• [slide was not shown in the session]
• I've talked about a bunch of random ideas for using AutoPkg and JSSImporter.
• They're all serving different needs.
• None of these different types of recipes have really been shared until now, but if we do, we should have a naming convention.
• [click] Only the standard testing recipes should be called JSS recipes.
• [click] Daz Wallace suggested jss-upload for the package-only recipes.
• I think that was a good idea. Let's extend that to other types of recipe.
• I am using some of these in my organisation, and you'll already see some examples in my autopkg recipe repo.

© JAMF Software, LLC

Presentation objectives:

• AutoPkg + JSSImporter - setup and use

• Use standard JSS recipes

• Roll your own JSS recipes

• The future of JSSImporter

Finally let's take a look at the future of JSSImporter.

© JAMF Software, LLC

Stop!

• [slide was not shown in the session]
A big change I made is to change the way that JSSImporter handles repeat AutoPkg runs.

• JSSImporter used to update the policy, script, extension attributes and groups every time AutoPkg ran, even if there was no change to the package.
• This is a problem if you have a workflow where you delete your Testing policies when your app moves to production.
• To prevent this, I introduced a new STOP_IF_NO_JSS_UPLOAD key to JSSImporter.
• It's a True or False key, set to True by default.
• Now, if the package is unchanged from the last time AutoPkg ran, the processor just stops, and no changes are made to your server.
• If you don't like this change, and want to overwrite your policies every AutoPkg run...
• [click] run AutoPkg with the key set to False,
• [click] or, you can add the key in your recipe override
• [click] or add it to you your AutoPkg preferences file to revert to the old behaviour for all recipes.

© JAMF Software, LLC

STOP_IF_NO_JSS_UPLOAD

Stop!

© JAMF Software, LLC

STOP_IF_NO_JSS_UPLOAD

Stop!

 $ autopkg run "Brilliant App.jss"
 --key STOP_IF_NO_JSS_UPLOAD=False

© JAMF Software, LLC

STOP_IF_NO_JSS_UPLOAD

Stop!

 <key>STOP_IF_NO_JSS_UPLOAD</key>
 <false/>

 $ autopkg run "Brilliant App.jss"
 --key STOP_IF_NO_JSS_UPLOAD=False

© JAMF Software, LLC

STOP_IF_NO_JSS_UPLOAD

Stop!

 <key>STOP_IF_NO_JSS_UPLOAD</key>
 <false/>

 $ autopkg run "Brilliant App.jss"
 --key STOP_IF_NO_JSS_UPLOAD=False

 $ defaults write com.github.autopkg
 STOP_IF_NO_JSS_UPLOAD -bool false

© JAMF Software, LLC

Skip things

• Ignore scope in recipes

• Ignore scripts in recipes

• Do not update existing smart groups

• [slide was not shown in the session]
Here are some other new changes I don't have time to describe, which give you more flexibility on deploying production policies. I'll include more details in the link at the
end of the talk.

© JAMF Software, LLC

Skip things

skip_scope = True

• Ignore scope in recipes

• Ignore scripts in recipes

• Do not update existing smart groups

© JAMF Software, LLC

Skip things

skip_scope = True

skip_scripts = True
• Ignore scope in recipes

• Ignore scripts in recipes

• Do not update existing smart groups

© JAMF Software, LLC

Skip things

skip_scope = True

skip_scripts = True

do_update = False

• Ignore scope in recipes

• Ignore scripts in recipes

• Do not update existing smart groups

© JAMF Software, LLC

The future of JSSImporter

• JSSImporter's future depends on three big factors.
• The first one is Apple. Apple have bundled Python 2 in with macOS since the early days of OS 10.
• JSSImporter is a Python processor, dependent on an underlying Python framework called 'python-jss'.
• [click] But the python developers have declared that January 2020 is the end-of-life date for Python 2.
• [click] Apple have responded by stating they won't bundle any version of Python in with future versions of macOS, so AutoPkg users will have to install Python

themselves in future.
• [click] Nick McSpadden of Facebook and others are currently refactoring AutoPkg to work on python 3, and we have to do the same for python-jss and JSSImporter.
• Mosen has done some of the work, but there's busy times ahead for the next few months...

© JAMF Software, LLC

The future of JSSImporter

Python 2 end-of-life
January 2020

© JAMF Software, LLC

The future of JSSImporter

Python 2 end-of-life
January 2020
No system Python runtime in
"future version of macOS"

© JAMF Software, LLC

The future of JSSImporter

Python 2 end-of-life
January 2020
No system Python runtime in
"future version of macOS"
AutoPkg refactor underway

© JAMF Software, LLC

The future of JSSImporter

• The second thing we depend on is of course Jamf.
• Back in 2014 there was no Jamf Cloud. Packages were uploaded to a repo using SMB or AFP.
• [click] But when the Jamf Distribution Server was created, no official API object was documented for uploading packages.
• Shea Craig was able to reverse engineer the Casper Admin app to reveal an undocumented API request object for uploading packages, and build this into python-

jss so that JSSImporter would work with the JDS, but it's always been a hack.
• [click] Unfortunately, Jamf Cloud also has no official documented API object for uploading packages. We are lucky that the JDS method is also more-or-less working

with Jamf Cloud, but it's pretty fragile.

© JAMF Software, LLC

The future of JSSImporter

© JAMF Software, LLC

The future of JSSImporter

No official API object for
package uploads to Jamf
Cloud

© JAMF Software, LLC

Upvote! ^^^

• I've had good discussions with Jamf about this problem this week, but please do upvote this Feature Request to give the issue more impact!

© JAMF Software, LLC

The future of JSSImporter

• Another problem that we have faced with the migration to Jamf Cloud is the performance of API requests.
• The way JSSImporter works is to send a series of separate API requests during the recipe run, to make all the required changes:

• [click] Uploading the package and creating a package object in Jamf, creating any new categories, creating or updating any linked scripts and extension
attributes, creating or updating the smart group, creating or updating the policy, and uploading the self service icon.

• Many of these API requests depend on each other - for instance, the policy creation request will fail, if the linked categories and smart groups don't exist.

© JAMF Software, LLC

The future of JSSImporter

Jamf Cloud API performance

© JAMF Software, LLC

The future of JSSImporter

Jamf Cloud API performance

© JAMF Software, LLC

The future of JSSImporter

Jamf Cloud API performance

• The problem is that Jamf Cloud is clustered, but there's no method for the API to hit the same node for each request in the sequence.
• So we get false conflicts and errors when we make a request to a different node before the previous request has synchronised.
• We've tried adding wait loops and checks into JSSImporter to work around this, but it's not perfect.
• [click] I've also had some great discussions about this over the last couple of days, so I'm hopeful we can solve this.

© JAMF Software, LLC

The future of JSSImporter

Jamf Cloud API performance

© JAMF Software, LLC

The future of JSSImporter

Jamf Cloud API performance

© JAMF Software, LLC

Upvote! ^^^

• You can all help get this fixed too by upvoting this FR!

© JAMF Software, LLC

Upvote! ^^^

• [slide was not shown in the session]
• And this one is from James Smith concerning getting a full-featured API.
• If you care about being able to use API requests to configure every aspect of your Jamf Pro servers, please consider this FR too!

© JAMF Software, LLC

The future of JSSImporter

• The third thing that JSSImporter's future depends on is you!
• JSSImporter is an open source project which is widely used, but Shea Craig no longer involved, and there's a lot to do to keep it alive.
• Whether you work at Jamf, or you're a Jamf customer who is a keen Python scripter, or are just happy to help test JSSImporter in your environment, I'd be very happy

to work with you.

© JAMF Software, LLC

The future of JSSImporter

Links
grahamrpugh.com

With that, thank you very much for listening!
As I said at the start, it's an essential part of our Apple device management service at ETH Zürich, and I hope it can help you out too.
Just to reiterate, I've provided links to everything I've described in this presentation, including some of the slides I didn't have time to show, in a blog post I posted today.
[click] You can also access info about AutoPkg, JSSImporter and the other tools I talked about directly from the Jamf Marketplace - thank you Charles!

• If there's time, I'm very happy to take questions now.

Links
grahamrpugh.com

Thank you for listening!
Give us feedback by
completing the 2-question
session survey in the JNUC
2019 app.

UP NEXT
Jamf Pro Reporting Solutions
14:45 - 15:30

